

Salt Control Program

Presented by Tess Dunham Kahn, Soares & Conway, LLP

Prioritization & Optimization Study

Collaborative 10-year salinity study

Geography	 Define salt sensitive hydrologic regions 				
Sources	 Identify salinity sources and impacts 				
Projects	 Identify, assess, and prioritize conceptual projects for long-term salt management 				
Management	 Identify non-physical projects and implementation plan 				
Governance	 Develop governance structure and funding plan 				
Funding	• Seek federal and state funds for implementation				
Recommendations	 For Phase II of the Salt Control Program 				

Prioritization & Optimization Study

Long-term strategies to achieve salt sustainability

ESTABLISH THE FOUNDATION

- Characterize Hydrologic Regions
 - Salt Conditions
 - Salt Loading
 - Salt Management Practices
 - Salt Sustainability Gap
- Develop Numeric Model Tool
- Salinity Target Development
- Special Studies

IDENTIFY PLANNING AREAS

- Determine Appropriate Scale for Salt Management Planning
- Characterize Selected Planning Areas

ANALYZE ALTERNATIVES FOR PLANNING AREAS

- Identify and Evaluate Alternatives
- Select Preferred Alternative
- Prepare Salt Management Plans

Planning areas defined by salt characteristics

SALT MANAGEMENT PLAN

TABLE OF CONTENTS

- 1. Planning Area
- 2. Existing/Planned Salt Management Projects
- 3. Non-Physical Projects
- 4. Physical Projects with Conceptual Designs
- 5. Estimated Costs
- 6. Phase 2 Implementation Schedule

Salinity Target Setting – Delta Mendota Subbasin Archetype

Water Districts - Del Puerto, Patterson, San Luis, Grassland San Joaquin River Exchange Contractors San Joaquin Valley Drainage Authority Irrigated Lands Program Cities of Patterson, Gustine, Newman

3/29/2025

Salinity Target Setting — sub-area delineation

Proposed modeling scenarios

- Purpose of Modeling Effort to examine future salinity conditions
 - Identify salt accumulation problems impacting AGR and MUN uses
 - Use modeling tools to look 50, 100, or more years into the future
- 📽 Baseline Scenario
- Future Scenarios
 - Climate Change select base case
 - Business as usual

SGMA futures – land use, recharge, permitting SALINE Effect of Salt management measures COALITION

3/29/2025

Rationale for sub-area map

7

Different usage of surface water and groundwater in Delta-Mendota study area

- **Municipal** mainly dependent on groundwater
- **Northern Area** mix of surface and groundwater
- **SJREC** strong surface water rights, predominant use of surface water
- Southwestern Area groundwater use limited by poor quality (high salinity) – dependent on surface water supplies – impacts cropping, land management, irrigation practices
- Southeastern Area Groundwater is a key source for beneficial uses
- Refuges Unique water management regime for managing wetland habitats

Crop Acreage in the Delta-Mendota Subbasin

2021 Crop Map						
Crop*	Mapped Acres	Percent of Area	Cum. Percent of Area	CropTolerance		
Almonds	136,449	32.8	32.8	Sensitive		
Pistachios	39,177	9.4	42.3	Mod. Sensitive		
Corn, Sorghum or Sud an	37,407	9.0	51.3	Mod. Sensitive		
Tomatoes (all)	34,998	8.4	59.7	Mod. Sensitive		
Alf alf a and alfalfa mixtures	34,539	8.3	68.0	Mod. Sensitive		
Cotton	33,817	8.1	76.1	Tolerant		
Vineyards - No Subclass	11,553	2.8	78.9	Mod. Sensitive		
Wheat	11,443	2.8	81.7	Mod. Tolerant		
Melons, Squash, and Cucumbers	11,277	2.7	84.4	Mod. Sensitive		
Grain and Hay - Misc.	10,369	2.5	86.9	Tolerant		
Walnuts	10,000	2.4	89.3	Sensitive		
Pasture - Mixed	8,370	2.0	91.3	Tolerant		
Pasture - Miscellaneous Grasses	6,050	1.5	92.7	Tolerant		
Young Perennial	4,997	1.2	93.9	Sens./Mod. Sens		

2022 GIOP Map							
Crop*	Mapped Acres	Percent of Area	Cum. Percent of Area	CropTolerance			
Almonds	135,352	33.0	33.0	Sensitive			
Cotton	44,355	10.8	43.8	Tolerant			
Pistachios	39,958	9.8	53.6	Mod. Sensitive			
Corn, Sorghum or Sud an	35,587	8.7	62.3	Mod. Sensitive			
Tomatoes (all)	32,464	7.9	70.2	Mod. Sensitive			
Alf alf a and alfalfa mixtures	29,175	7.1	77.3	Mod. Sensitive			
Vineyards - No Subclass	10,717	2.6	79.9	Mod. Sensitive			
Walnuts	9,573	2.3	82.3	Sensitive			
Wheat	9,470	2.3	84.6	Mod. Tolerant			
Young Perennial	9,426	2.3	86.9	Sens./Mod. Sens			
Melons, Squash, and Cucumbers	9,340	2.3	89.2	Mod. Sensitive			
Pasture - Mixed	7,866	1.9	91.1	Tolerant			
Grain and Hay - Misc.	6,722	1.6	92.7	Tolerant			
Pasture - Miscellaneous Grasses	6,192	1.5	94.2	Tolerant			

0000 Oren Mar

- 415,650 acres
- 37.5% of acres are sensitive

- 409,900 acres
- 37.6% of acres are sensitive

*Excluding idle land

Preliminary AGR Protective target range

Basis for salinity range to protect AGR beneficial use

- Almonds identified as most salt sensitive crop
- Range of Salinity Thresholds (30-day averages unless noted)
- 1350 µmhos/cm EC 100 % yield (performance goal)
- 1550 µmhos/cm EC 95% yield (WQO except in extended dry period)
- 2470 μ mhos/cm EC 75% yield (WQO in extended dry period)
- 2200 µmhos/cm EC Short term MCL (annual average)

Municipal drinking water target

range

10

- Secondary MCLs for Drinking Water (annual averages)
 - Acceptable Range: 900 to 1600 µmhos/cm EC
 Allowable in Short Term: 2200 µmhos/cm EC

Preliminary target range - summary

"Normal" years to protect AGR and MUN beneficial uses
 1350 to 1550 EC

Drought/Extended Dry Periods
1600 to 2200 EC

Model Linkage and Output

^{*}NOTE: arrows represent combined water and salt transport

For More Information

CV-SALTS

- Website and sign-up for email updates : cvsalts.info
- Email: info@cvsalinity.org
- Regional Water Quality Control Board
 - cvsalts@waterboards.ca.gov

