

Integration of Hydroponic Controlled Environment Agriculture with Brackish Water Resources

R. Karthikeyan, Gary Amy,David Ladner, Clinton Williams,Sandra Branham, Jeff Adelberg

Controlled Environment Agriculture Platform for Cultivation of Salt-Tolerant Crops with Integrated Saline Water Irrigation and Salinity Management.

USDA-NIFA-SAS. \$10M (USDA NIFA SAS CAP # 2023-69012-39038)

Water (re)sources for agricultural irrigation

Conventional sources

- Freshwater from surface and groundwaters
- Increasingly impacted by regional droughts
- Non-conventional (marginal quality) sources
 - Saline and brackish surface and groundwaters
 - Seawater impacted coastal surface and groundwaters
 - Inland groundwater
 - Overall salinity: problematic and beneficial salts
 - Reclaimed municipal wastewater
 - Human pathogens, organic micropollutants (OMPs)
 - Attribute: in situ presence of plant nutrients (P & N)
 - Urban stormwater (urban and peri-urban)
 - Heavy metals, hydrocarbons, pesticides, fertilizers

Irrigation water withdrawals in US, 1950-2015

Saline/brackish surface and groundwater

Water quality challenges – saline & brackish water

Abundance of saline and brackish waters

 Bays, estuaries, river deltas, coastal & inland groundwaters, geothermal brines, etc.

Salinity (TDS) and specific ions

- Brackish: 1,000 10,000 ppm TDS;
- Saline: 10,000 35,000 ppm (seawater)
- Problematical ions (e.g., Cl⁻, H₂BO₃⁻)
- Beneficial ions (e.g., K⁺, Ca²⁺)

Requires

salt tolerant crops (halophytes) or

enhanced salt tolerance through breeding (e.g., mustard greens) or grafting (e.g., tomatoes)

Risk of soil salinization in conventional agriculture...

Controlled Environment Agriculture (CEA)

Greenhouses or modular containers Controlled water, light, temperature, humidity, ventilation Deployment: Rural, peri-urban, and urban CEA Hydroponic (soilless) or soil based Nutrient solution (e.g., nutrient film technique (NFT)) Leafy greens, tomatoes, cucumbers, melons, strawberries **Greater Control for Non-Conventional Water Sources**

Crop salinity tolerance

Pre-breeding & phenotyping: Mustard greens

Salinity screening in NFT system 464 USDA *B. juncea* (mustard greens) accessions Self-pollinate to S2 generation Increase homozygosity Generate seed for salinity screening Plants phenotyped & sequenced

Control: no salt

Partial desalting: A new paradigm for agricultural sector

Tailored-quality irrigation water for cultivation of

salt-tolerant crops: match salinity with salt tolerance

Potential membrane processes

- Nanofiltration (NF); Pressure-driven process; Ion removal based on ion size and/or charge
- Electrodialysis (ED); Electrically-driven process; Ion removal based on ion size and/or charge
- Range of NF and ED membranes and different-objective operating conditions

Besides overall salinity

- Ions detrimental to plant growth (e.g., Na⁺, Cl⁻, H₂BO₃⁻)
- Ions beneficial to plant growth (e.g., K⁺, Ca²⁺, Mg²⁺)

University of California - Salinity Management

Nanofiltration (NF)

Membrane separation based on ion size and charge

Ion *fractionation*, e.g., mono- vs. di-valent ions in product versus concentrate, respectively

Operational Parameters: Pressure, Flux (flow/area), Recovery (product/feed)

Membrane Properties: Water permeability, Pore Size or MWCO, Surface charge (- or +)

NF process simulation results (Feed water: diluted seawater @ 10,000 ppm; feed pressure: 20 bar; 1-stage; 8 elements/pressure vessel)

Membrane	Recovery (R, %)	Permeate TDS (ppm)	SEC (kWh/m ³)
NF 270	90	9,000	0.7
NF200	85	5,500	0.8
NF90	70	1,500	1.0
BW30	55	250	1.3

Notes:

- SEC: Specific Energy Consumption
- Tradeoffs between Recovery and SEC
- High Recovery: Lower Brine Management
- Osmotic Pressure of Feed: 6.3 bar

Electrodialysis (ED)

Separation based on cation- and anion-exchange membranes in electrical field between electrodes; alternating *dilute* and *concentrate* channels

Process Stack: Array of membrane pairs between electrodes

Process Stages: Series of stacks

Operating Parameters: Voltage, Current Density, Flow, Residence Time, Recovery, Cell Pairs, Membrane Area

Membrane Properties: Permeability, Resistance, Thickness

ED Process Simulation Results

(Feed water: diluted seawater; recovery fixed at 90 %)

ED Membranes	# of Stages	Feed TDS (ppm)	Permeate TDS (ppm)	SEC (kWh/m ³)
Conventional	3	10,000	5,000	2.25
Conventional	4	10,000	5,000	1.95
Conventional	4	10,000	2,500	3.38
Conventional	5	10,000	2,500	3.08
Conventional	2	5,000	2,500	1.01
Conventional	3	5,000	2,500	0.84
Thin	3	10,000	5,000	2.08
Thin	4	10,000	2,500	3.07

Tedesco et al., J. Membrane Science 510:370 (2016)

Notes:

- SEC values approach Seawater RO (2.5 kWh/m³)
- Improved SEC with lower feed TDS
- Improved SEC with increasing # of stages but higher capital cost
- Thinner ED membranes lowered SEC

Comparison of NF, ED, and Blending (with RO)

Specific energy consumption (kWh/m³): NF outperformed ED; ED performance improved at lower feed TDS

RO with source blending: compares favorably with NF alone to achieve an energy consumption below 1 kWh/m³, *but much lower recovery for RO (more brine)*

Both NF and ED with conventional CEX and AEX membranes: preferentially remove di-valent over mono-valent ions.

ED using monovalent ion selective (MIS) membranes: potential application - a product water containing beneficial ions such as Ca²⁺ and Mg²⁺ and a waste stream containing problem ions (e.g., Cl⁻ and Na⁺)

Crop Yield, Water Quality (TDS) & SEC of different desalting scenarios

(Fruits and vegetables yield obtained from (Maas and Hoffman, 1977; Wallender and Tanji, 2011) and International Center for Bio-saline Agriculture (ICBA, 2004). SEC of each water treatment is from this study.)

Hydroponic CEA with Integrated Brackish/Saline Water

Brine Management

(*Higher recovery: lower brine*)

- Sewer discharge
- Deep well injection
- Evaporation pond
- Salt gradient solar pond

rkarthi@clemson.edu gamy@clemson.edu