Date: Wednesday, January 29, 2025 2025 FWEA SOUTH FLORIDA CHAPTER TECHNICAL SEMINAR **PFAS IN WATER AND WASTEWATER: SOLUTIONS FOR A HEALTHIER TOMORROW**

6 PDHs - PDH Course No. 0002710

A Mile High Tale of 3 PFAS Treatment Technologies Piloted in Colorado

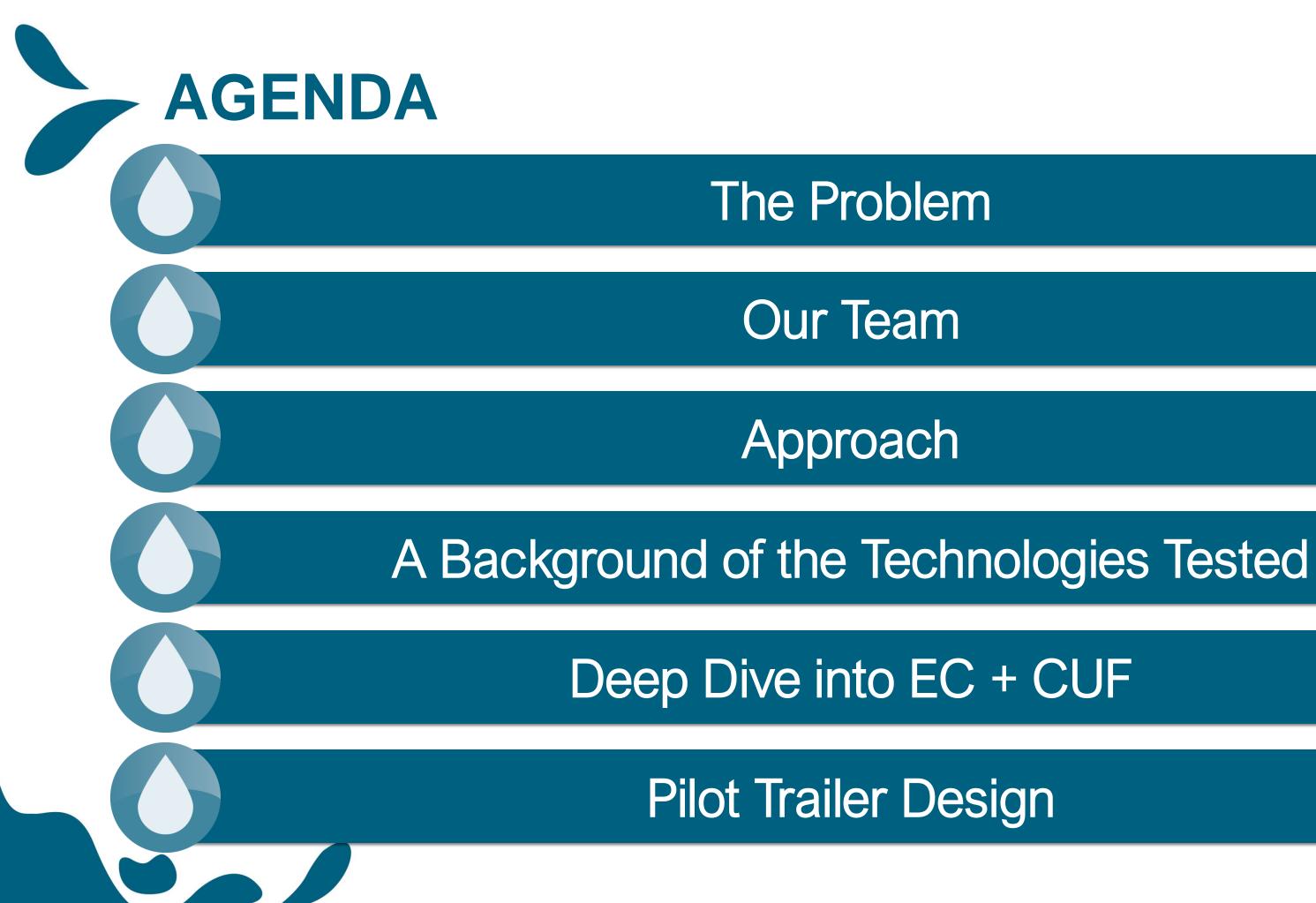
Oxygen

Carbon

Fluorine

Hydrogen

Perfluorooctanoic Acid (PFOA)


Kimley»Horn

Oxygen

Hydrogen

Sulfur

Perfluorooctane sulfonic acid (PFOS)

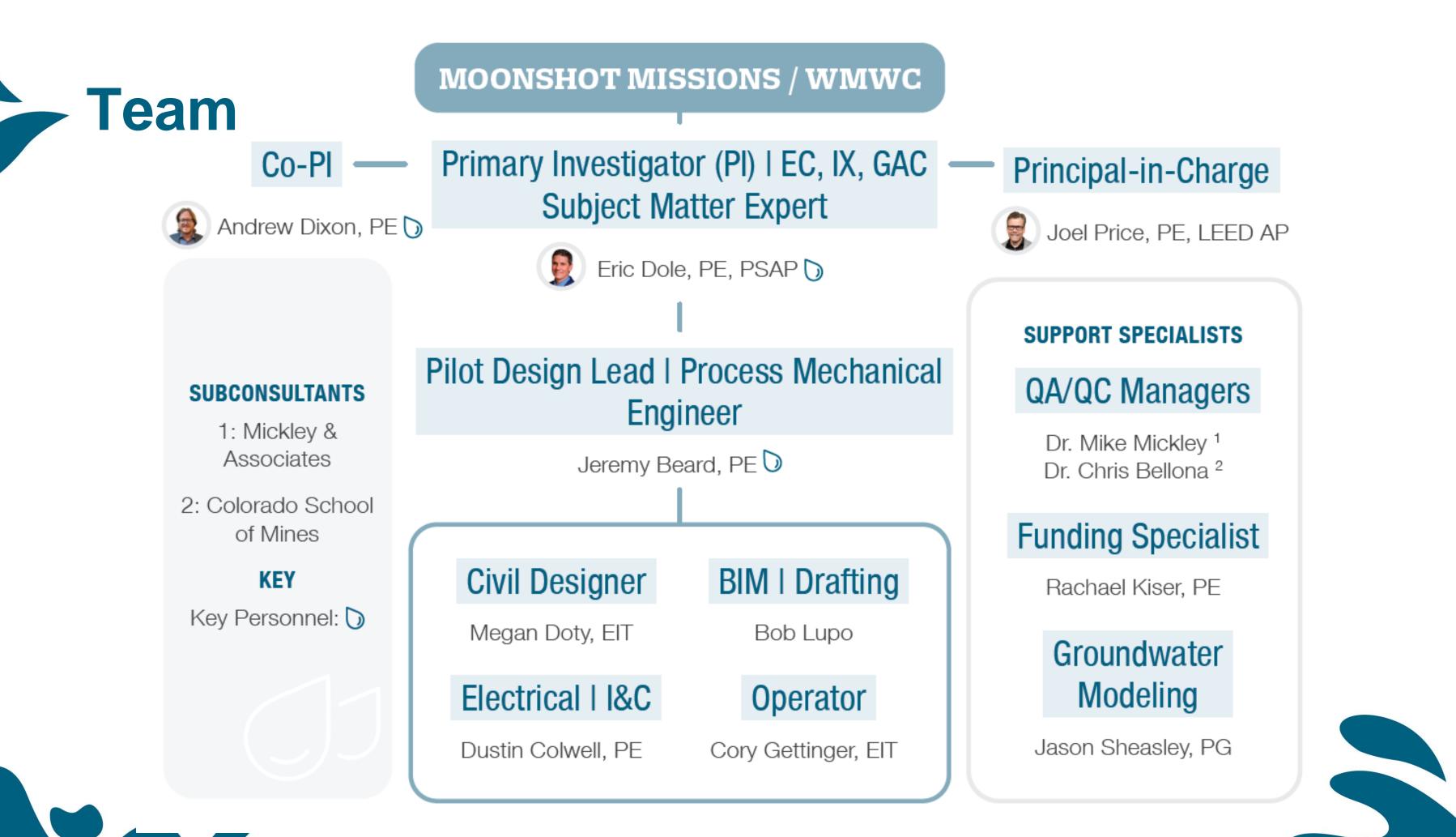
The Problem

- Nearby Fort Carson Army Base polluted shallow aquifer with AFFF
- WMWC 120 gpm well supplies water to customers from this aquifer
- PFAS concentrations from well for PFOS, PFOA and PFHXs exceed EPA MCL
- EC was only technology tested to date at site and achieved ND both times
- EC is not permitted by CDPHE as DW BAT and requires piloting

Analyte	Chemical Formula	Concentration (ppt)	MCL (ppt)
PFOS	C8 HF17O3S	23	4
PFHxA	C6HF11O2	20	
PFOA	C8HF15O2	17	4
PFHxS	C6HF13O3S	32	10
PFBS	C4HF9O3S	32	
PFHpA	C7HF13O2	5.6	
		Quela Consula e alla stadius A	1 and 2000

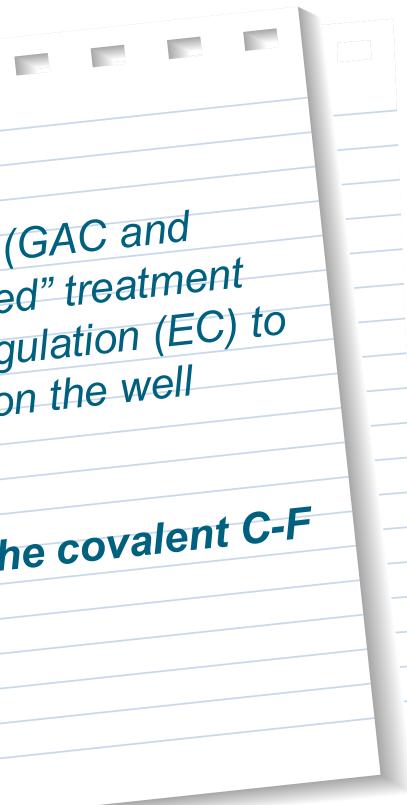
Grab Sample collected in August 2023

aquifer with AFFF rs from this aquifer nd **PFHXs** exceed EPA MCL achieved ND both times quires piloting


The Problem...But wait, there's more

- Limited water quality data to project SBA or GAC performance
 - Determine if pre-treatment is needed
- EC does not have computer model to project performance and requires bench testing
- What we do know is the water is very hard
 - 513 mg/L TH as CaCO3 + excessive Fe levels
 - Could pose performance issues
- Current chlorine gas disinfection dosing point is at the well shroud / intake
 - Relocate to alternative location downstream of pilot
 - Use abandoned well ~30-ft away as alternative pilot supply source

Our Team


Our Approach

Compare existing PFAS BATs (GAC and SBA) to an emerging "electrified" treatment technology called electro-coagulation (EC) to see which performs the best on the well water and

Determine if EC destroys the covalent C-F bond

Phase 4

Final Report Writing and Various CDPHE Form Submittals

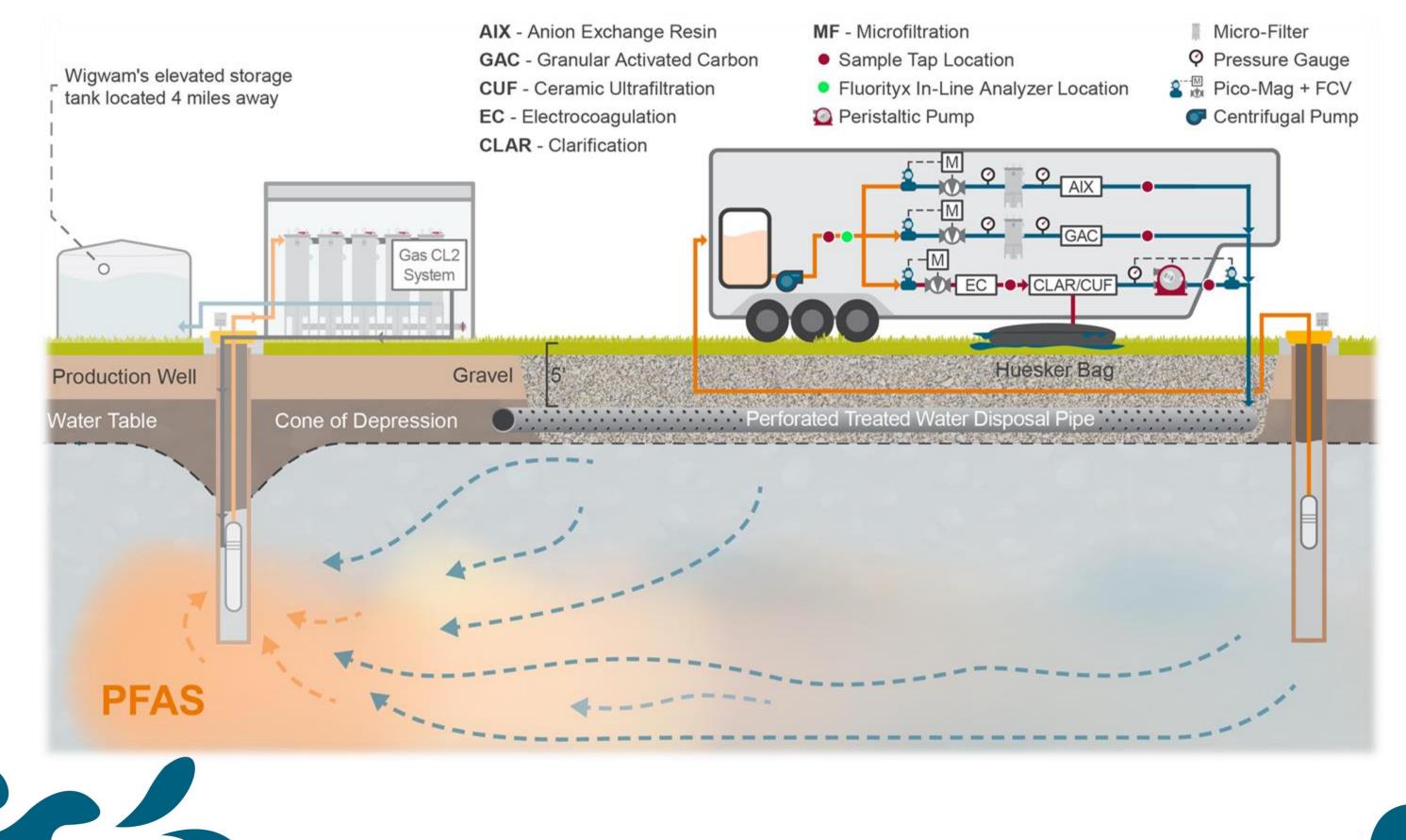
Phase 1 - Background Data Review

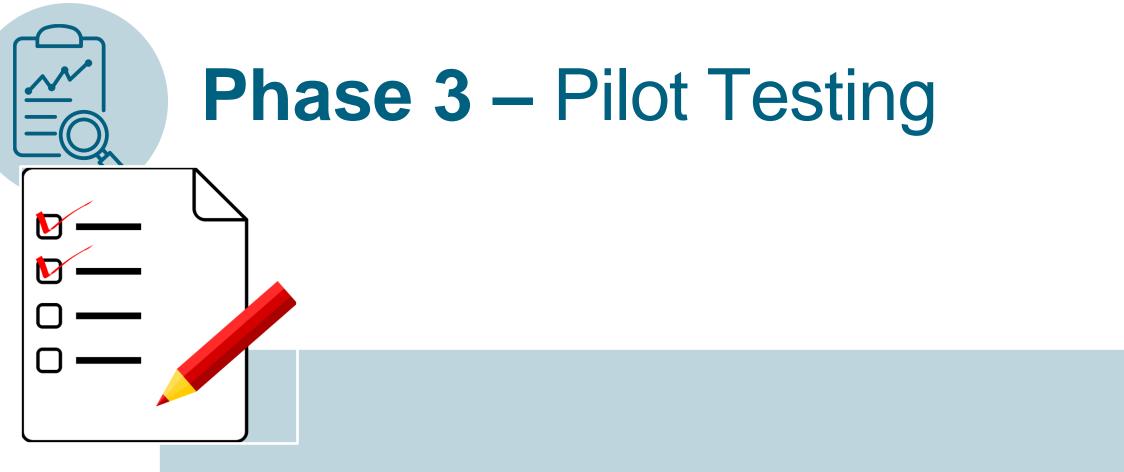
- Thorough review of water quality analysis (WQA) required
- Identify GAP analysis on available WQ parameters
- GAC and IX performance can be modeled with MFR proprietary software to determine pilot performance and optimal configuration
- Immediately develop sampling plan to acquire at least 8 data sets for
 - ♦all PFAS compounds
 - Competing ions per IX and GAC MFR

PFOA
PFOS
PFBS
GneX
PFNA
PFHxS

Conductivity:	рН:	Temperature (°C):	
Feedwater Analysis:	NH4 ⁺	CO ₂	
Please give units (mg/L as ion	K ⁺		
or ppm as CaCO3 or meq/L)	Na ⁺		
	Mg ²⁺	N03 ⁻	
	Ca ²⁺		
PFOA	Ba ²⁺	F	
PFOS	Sr ²⁺		
PFBS		PO4 ³⁻	
GneX PFNA	Fe (tot)		
PFHxS	Mn ²⁺	SiO ₂ (c	olloidal)
	Boron		oluble)
	Al ³⁺		
ГОС:			
FDS (by method): FOC: 30D: COD: AOC: 3DOC:			
FDS (by method): FOC: BOD: COD: AOC: BDOC: Fotal Alkalinity (m-value): Carbonate Alkalinity (p-value):			
FDS (by method): FOC: BOD: COD: AOC: BDOC: BDOC: Fotal Alkalinity (m-value): Carbonate Alkalinity (p-value): Fotal Hardness:			
FDS (by method): FOC: 30D: COD: AOC: 3DOC: 3DOC: Fotal Alkalinity (m-value): Carbonate Alkalinity (p-value): Fotal Hardness: Furbidity (NTU):			
FDS (by method): FOC: BOD: COD: AOC: BDOC: BDOC: Fotal Alkalinity (m-value): Carbonate Alkalinity (p-value): Fotal Hardness: Furbidity (NTU): Silt Density Index (SDI): Bacteria (count/ml):			
FDS (by method): FOC: BOD: COD: AOC: BDOC: BDOC: Fotal Alkalinity (m-value): Carbonate Alkalinity (p-value): Fotal Hardness: Furbidity (NTU): Silt Density Index (SDI): Bacteria (count/ml):			
TDS (by method): TOC: SOD: SOD: SOD: AOC: SDOC: Total Alkalinity (m-value): SDOC: Total Alkalinity (p-value): Carbonate Alkalinity (p-value): Total Hardness: Turbidity (NTU): Silt Density Index (SDI): Sacteria (count/ml): Free Chlorine:			
TDS (by method): TOC: SOD:			
TDS (by method): TOC: SOD: SOD: SOD: SOD: SOD: AOC: SODC	rity, etc.)		
TDS (by method): TOC:	rity, etc.)		

Conductivity:	pH:	Temperature (°C):	
Feedwater Analysis:	NH4 ⁺	CO ₂	
Please give units (mg/L as ion	K ⁺	CO3 ²⁻	
or ppm as CaCO3 or meq/L)	Na ⁺	HCO ₃ -	
	Mg ²⁺	NO ₃ ⁻	
	Ca ²⁺	Cl⁻	
PFOA	Ba ²⁺	F^{-}	
PFOS	Sr ²⁺	SO4 ²⁻	
PFBS	Fe ²⁺	PO ₄ ³⁻	
GneX PFNA	Fe (tot)	S ²⁻	
PFHxS	Mn ²⁺	SiO ₂ (colloidal)	
	Boron	SiO ₂ (soluble)	
	Al ³⁺		
TOC: BOD: COD: AOC: BDOC: Total Alkalinity (m-value): Carbonate Alkalinity (p-value): Total Hardness: Turbidity (NTU): Silt Density Index (SDI): Bacteria (count/ml):			····
(odor, smell, color, biological activ	rity, etc.)		
Date:			


Sample Identification:					
Feed Source:					
Conductivity:			Temperature (°C):		
Feedwater Analysis:	NH_4^+			CO ₂	
Please give units (mg/L as ion	K^+	•••••		CO3 ²⁻	
or ppm as CaCO3 or meq/L)	Na ⁺			HCO3-	
	Mg ²⁺			NO3	
	Ca ²⁺			Cl⁻	
PFOA	Ba ²⁺			F ⁻	
PFOS	Sr ²⁺			SO4 ²⁻	
PFBS	Fe ²⁺			PO4 ³⁻	
GneX	Fe (tot)			S ²⁻	
PFNA PFHxS	Mn ²⁺			SiO ₂ (colloidal)	
1111/0	Boron			-	
	Al ³⁺				
Other Ions:					
FDS (by method): FOC: BOD: COD: AOC: BDOC: BDOC: Fotal Alkalinity (m-value): BOC: Fotal Hardness: Furbidity (NTU): Silt Density Index (SDI): Bacteria (count/ml): Free Chlorine:					····
Domarke					
Remarks: (odor, smell, color, biological activ					
ouor, sinen, color, biological activ					
Analysis Ry					
Analysis By:					
Date:					



- EC does not have a modeling software and requires field testing
- Develop a bench testing protocol that will ♦outline how EC will be evaluated Identify field parameters to be collected, configurations, and water quality analyses
- Development of a bench testing technical memorandum so pilot testing can be configured per optimal bench config
- Use EPA 1633 and 1621 to prove / disprove EC defluorination capability
- Include Primary and Secondary MCL's

Goals

- Affirm the removal efficiency achieved from bench tests (EC only) and model projections (SBA and GAC)
- Fine-tune design constraints and testing configuration
- Give staff opportunity to become familiar with the technology
- Determine best performing technology and associated budgetary capital and O&M costs
- Determine if EC destroys PFAS?

Phase 3 – Pilot Testing

eliverables

- Update and automate trailer to include SBA, GAC and CUF
- Civil, mechanical, EI&C, and process drawings with specifications on drawings
- Pilot test protocol development
- PFAS technology comparison matrix to qualitatively compare each technology

Phase 5 – Final Report Writing and Various CDPHE **Form Submittals**

- TM's at each milestone that summarize the "what, why, and how" as well as lessons learned will be compiled into the Final Report
- Preparation of necessary CDPHE forms

Department of Public Health & Environment

COLORADO APPENDIX D: Alternative Technology Acceptance Application Safe Drinking Water Program Implementation Policy #5

> 4300 Cherry Creek Drive South, 82 Denver, Colorado 80246-1530 CDPHE.WQEngReview@state.co.us, 303-692-6298

Alternative Technology Acceptance Application

In accordance with the Colorado Primary Drinking Water Regulations (Regulation 11), the Water Quality Control Division (Division) may accept alternative filtration technologies to meet the requirements of Regulation 11. The Division also elects to review technologies that do not meet or are not addressed by the State of Colorado Design Criteria for Potable Water Systems. The alternative technology review process does not need to have an associated project to apply however the applicant must have information to support the application (e.g., third party testing reports)

Please note that review and approval for the design of any Public Water System proposing to use an accepted alternative technology will be handled on a case-by-case basis by the Division as required by Section 11.4(1) of Regulation 11.

A. Applicant Information	
Applicant / Entity	
Representative Name/Title	
Address (include City, State, Zip Code)	
Email	
Phone	Fax
B. Alternative Technology Information	
Water quality parameter	
Please discuss the targeted water quality parameter and the anticipated treatment level of the proposed technology	
Alternative technology general description	
Please provide a discussion of proposed alternative technology.	
Theory and calculations:	
Please provide a discussion of the background theory and backup calculations demonstrating how the proposed technology functions, unless such information is specifically documented as proprietary, e.g. the basis of a patent.	
Warranty	
Please discuss any applicable manufacturer's warranty and/or performance warranty.	
Product specifications:	
Please provide model numbers and <u>out-</u> sheets for all proposed treatment components. Provide specific information for technical components (e.g., flowrates, materials). State any requested treatment removal credits.	

Page 1 of 3	
	-

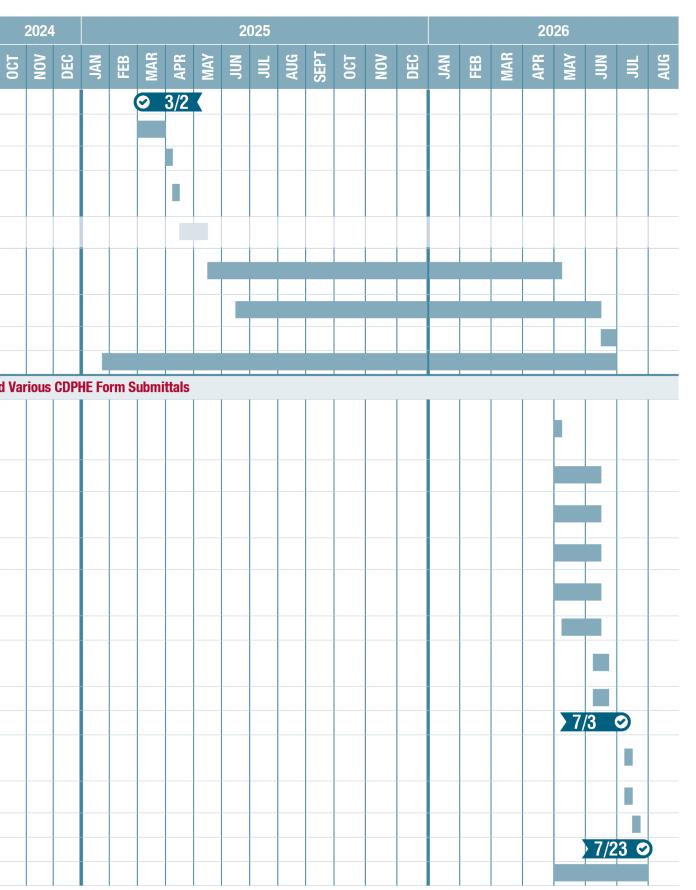
COLORADO Department of Public

ENVIRONMENTAL CHECKLIST

Use the Discussion and References space at the end of each section to document your responses. For example, explain how you determined the level of impact and document the reasoning if checking PA (possible adverse) for any resource. Attach additional pages if necessary.

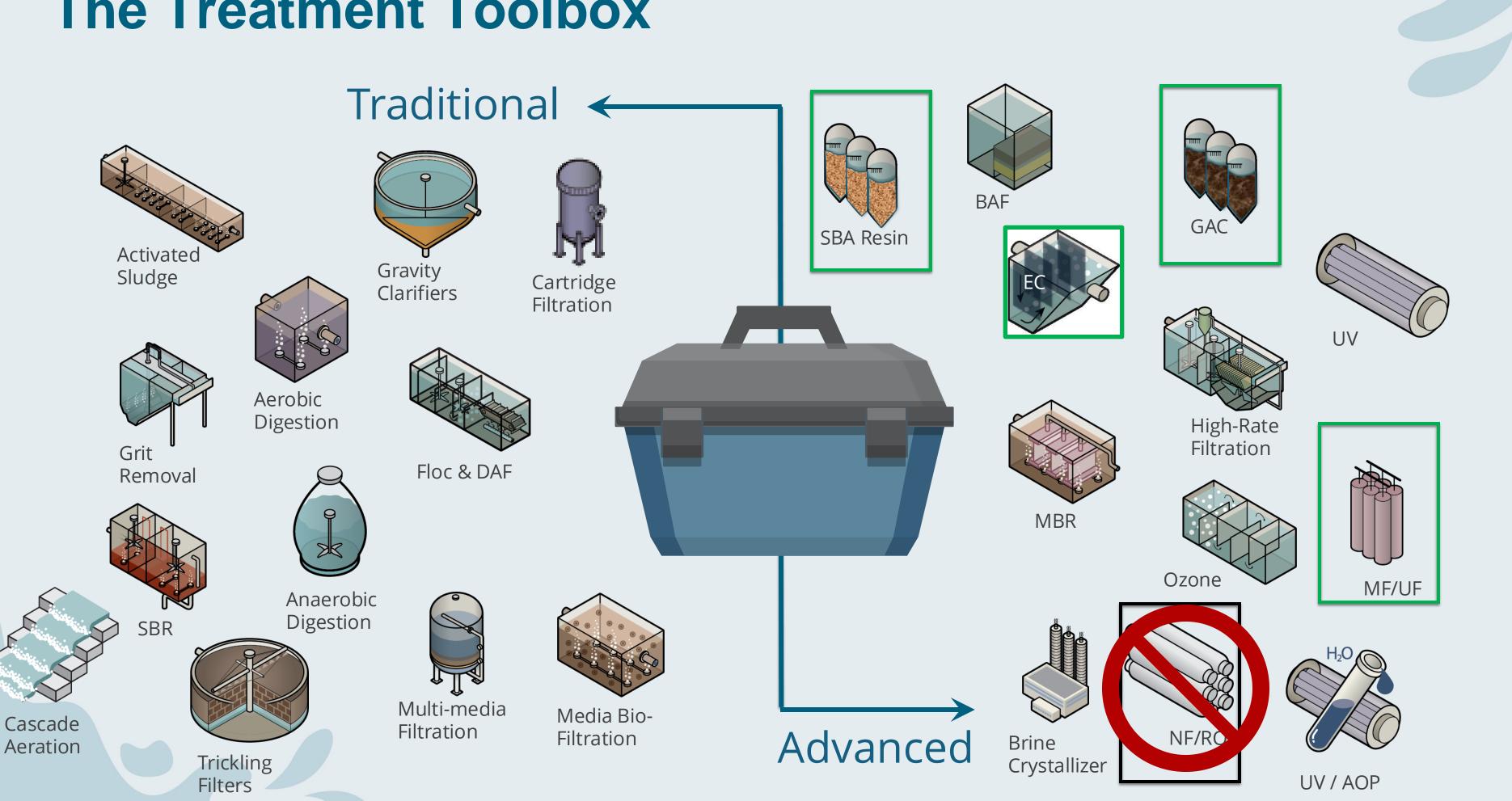
- 1. Brief project description, including identification of selected alternative:
- Describe if the project will improve or maintain water quality, and if the project addresses a TMDL. and/or Watershed Management Plan.
- Provide latitude and longitude of the proposed project (if a transmission / distribution / collection line identify the center point not the whole line):
- 4. Provide discharge (WW) or source (DW) information: N/A
- Provide NPDES/PWSID number:
- 6. Provide primary waterbody name and waterbody ID, secondary name (if available), and State designated surface water use:

SCHEDULE


	4	2024							2	025									20	26			
	OCT	NON	DEC	JAN	FEB	MAR	APR	MAY	NN	JUL	AUG	SEPT	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	NNC	JUL	AUG
Kick-Off Meeting		10/1																					
Oversight / Coordination									-														
Prepare Quarterly Progress Reports																							
Manage Schedule, Cost and Budget																							
Phase 1 - Background Data Revie	w	LL	_																				
Water Quality Review																							
GAP Analysis																							
Submit Status Report		01	11/2	\mathbf{X}																			
QA/QC																							
Phase 2 - Groundwater Modeling	and	Aquif	er Mi	itigat	ion S	trate	gy																
CERAFILTEC or PURIFICS Bench Testing																							
Phase 3 - Bench Testing																							
Contact Vendors to Establish Design Constraints and Availability of Bench Test Equipment																							
Assemble Water Quality Analysis (WQA) Matrix																							
Coordinate WQA with EPA ORD																							
Develop Field Test Matrix																							
Develop Bench Testing Protocol (BTP)																							
Submit to BTP to CDPHE and Wigwam for Review																							
Incorporate BTP Comments																							
Coordinate Bench Testing Equipment Delivery																							
Perform Bench Tests and Submit Samples for WQA																							
Data Dissemination and Result Discussion																							
Status Report																							
Progress Meeting with CDPHE and WMWC				6	2 1	/25																	
QA/QC																							
Phase 4 - Pilot Testing																							
Trailer and Site Design Upgrades																							
Develop Pilot Testing Protocol (PTP)																							
Submit to Design Drawings and PTP to CDPHE and Wigwam for Review																							
Coordinate Pilot Testing Equipment, Resin and Media Delivery																							
Incorporate PTP and Design Comments																							

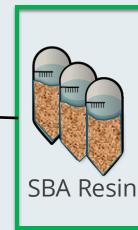
Submit Intended Use Plan Perform Trailer and Site Construction Upgrades Commission the Pilot Trailer Train WMWC and KH Staff on Trailer Operation, Troubleshooting and Documentation Operate Pilot Trailer Train WMWC and KH Staff on Trailer Operation, Troubleshooting and Documentation Data Dissemination and Result Discussion Status Report QA/QC Phase 5 - Final Report Writing and Various CDPHE Form Submittals Develop Final Report Outline that Aligns with CDPHE Permitting, Federal Funding and Alternative Analysis Compile Various Phase Status Reports into Final Report Structure *Develop Process Flow Diagram with Mass Balances for Selected Technology *Develop 15% Design Drawings for Selected Technology *Develop Level 4 Opinion of Probable Costs for Full Scale Design and Installation Develop Draft Report Submit to Design Drawings and Draft Report to CDPHE and Wigwam for Review Incorporate Comments Submit Final Report Develop PNA, ED and Alternative Technology Acceptance Application (AAAA) Submit to PNA, ED, AAAA to CDPHE and Wigwam for Review

Incorporate Comments


Submit Final Forms

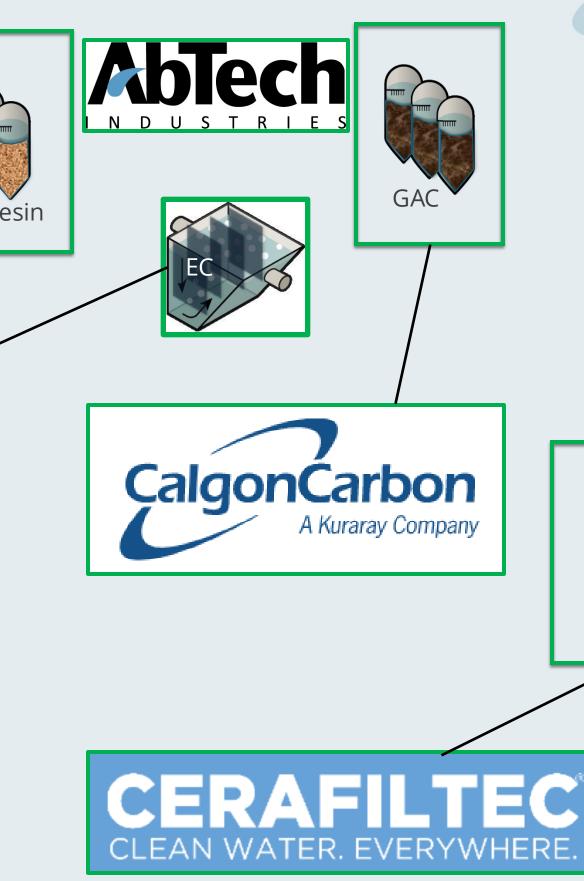
QA/QC

A Background of the Technologies Tested


The Treatment Toolbox

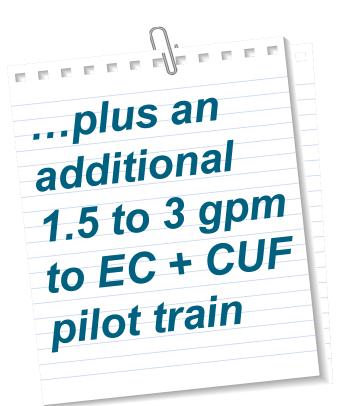
Our partners donated their PFAS technology for testing





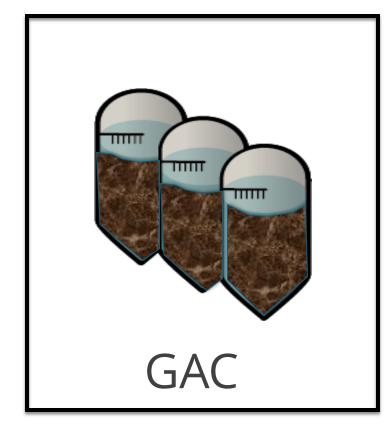
Process Solutions since 1959

MF/UF


Our design constraints for SBA, GAC and Abtech media is listed below.

Docian Colculations	$for \lambda/\lambda/\lambda/c$	DEAC Dilat for	(Ond Cloar D)	IC Vascal (Da	\\
Design Calculations				10 VESSEI (DU	JV

Design Calculations for WMWC PFAS Pilot for One Clear PVC Vessel (Downflow Configuration)							
Parameter	Units	LANXESS	CALRes	GAC	Abtech		
Service Flow Rate	gpm	1.9	1.9	0.85	1.5		
EBCT	min	2.10	2.10	6.00	2.00		
Resin Volume	ft ³	0.5	0.5	0.7	0.4		
Resin Volume	gal	4.0	4.0	5.1	3.0		
Vessel Diameter	ft	0.50	0.50	0.50	0.33		
Vessel Diameter	in	6	6	6	4		
Surface Area	ft ²	0.196	0.196	0.196	0.087		
Height of resin in vessel	ft	2.7	2.7	3.5	4.6		
Height of resin in vessel	in	32.6	32.6	41.7	55.2		
Hydraulic Loading Rate (4 to 12 gpm/ft ² , except Abtech = 40)	gpm/ft ²	9.7	9.7	4.3	17.2		
Expansion Volume	%	50%	50%	30%	0%		
Total Height for Initial Conditioning (X)	ft	4.1	4.1	4.5	4.6		
Total Height for Initial Conditioning	in	48.9	48.9	54.2	55.2		
Top and bottom headers + media support	%	20%	20%	20%	20%		
Total Height for Clear PVC Vessel	ft	4.9	4.9	5.4	5.5		
hL per ft of resin	psi/ft						


Note: all **blue** cells are input variables

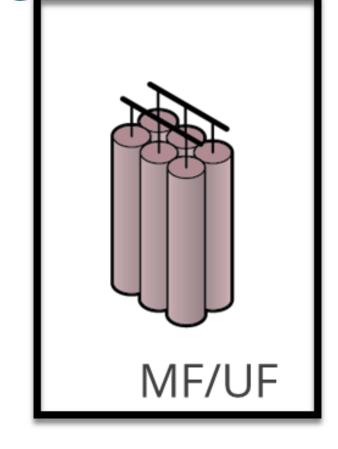
Total 6.2 gpm

Granular Activated Carbon

Destructive Technology WES NO

- Granular activated carbon (GAC) is a media-based treatment made from organic materials with high carbon contents such as wood, lignite, and coal
- One of the most studied technologies for PFAS removal and has been widely used for many years to adsorb organic compounds from drinking water treatment
- Effective at removing longer chain PFAS compounds from water
- Slower kinetics result in longer EBCTs (6 to 12 min)

Strong Base Anion (SBA) Resin

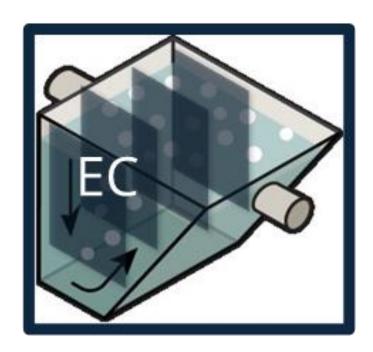

Destructive Technology

- Strong base anion (SBA) a type of resin that have a positive surface charge that binds negatively charged molecules such as PFAS to the resin surface
- Polystyrene-based polymer beads (0.5–1 mm diameter) that have positive adsorption sites that attract anionic PFAS by a combination of electrostatic and hydrophobic mechanisms.
- Effective at removing longer and shorter chain PFAS compounds from water
- Quicker treatment kinetics result in shorter EBCTs (2 to 4 min)
- Shorter chains require longer EBCT

Ceramic Ultrafilter (CUF)

Destructive

Technology


- Particle separation technique with pore size between 5um and 0.01-um (outside – in)
- Will be tested to remove e-floc from EC unit and potentially in front of AIX and GAC as pre-filter
- Can remove PFAS if coated with PAC

Courtesy: CERAFILTEC

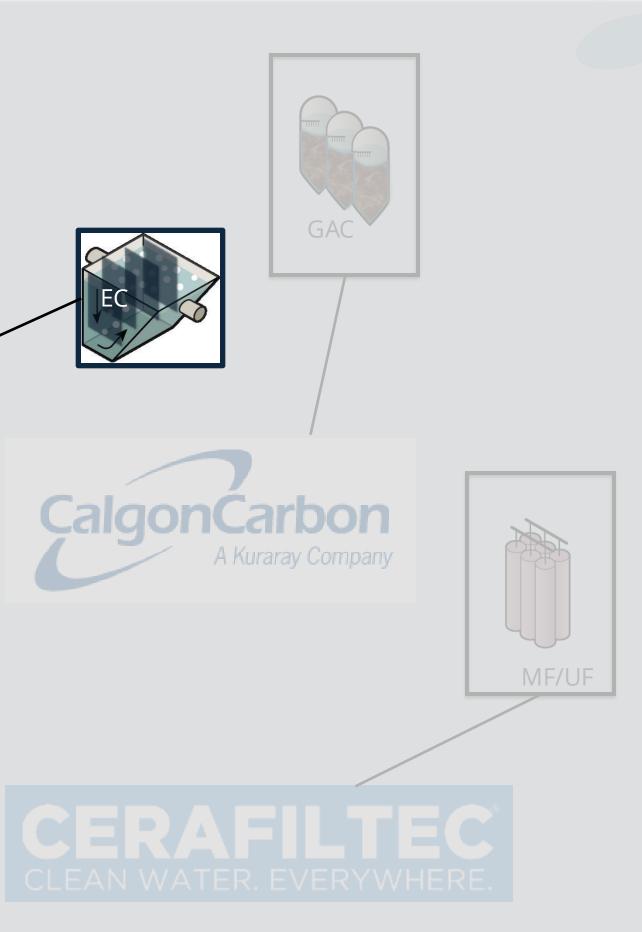
Electrocoagulation (EC)

Destructive

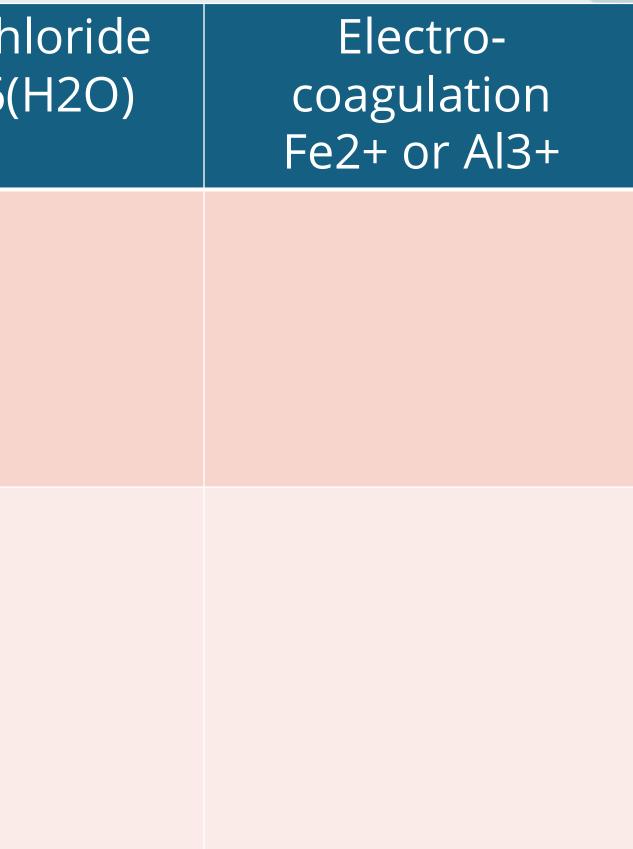
Technology

- An alternative to traditional chemical coagulation that does not increase TDS
- Uses electricity + sacrificial metal blades to drive efficient chemical coagulation reactions w/out adding metal salts
- Negatively charged contaminants magnetically attracted to anode (+); opposite for cathode (-)
- Polarity reversal every minute prevents passivation
- Requires downstream particle separation

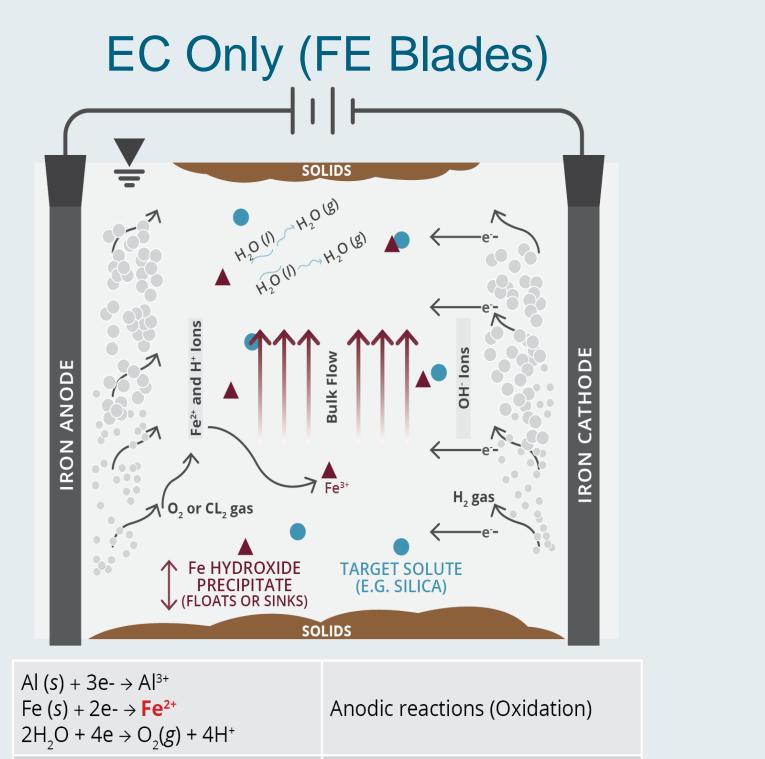
Deep Dive into EC + CUF System


Our partners donated their PFAS technology for testing

What is Electro-Coagulation?


- Wide range of contaminants can be removed with EC + filtration
- Challenging contaminants (i.e., Selenium) require
 - Longer process time
 - Higher amps
 - Tighter filtration
 - Chemical catalyst

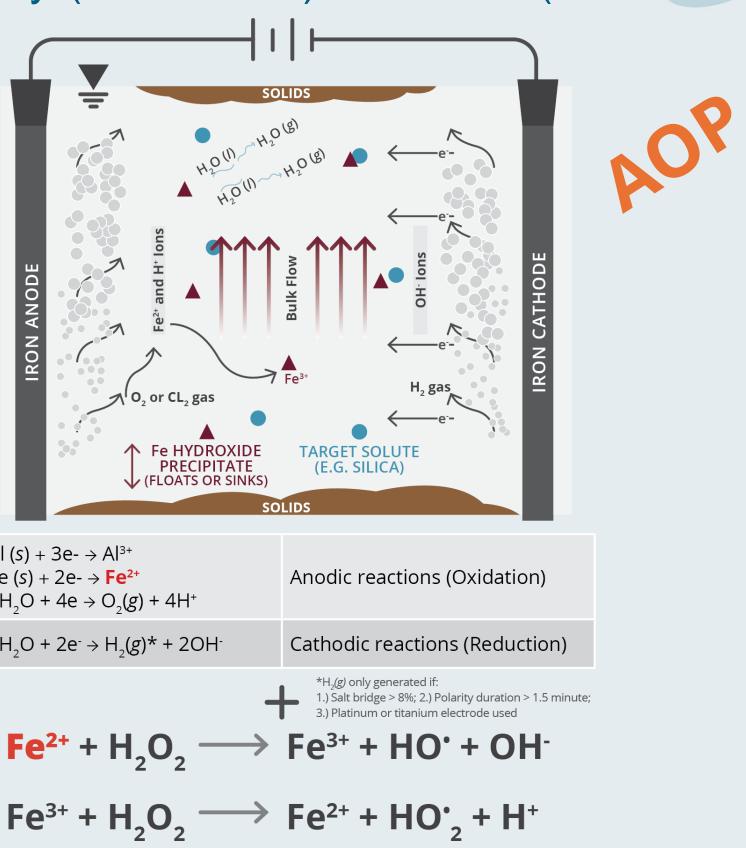
Energy efficiency is a function of volts per gap, conductivity of water and EC chamber configuration


Electro-Coagulation vs. Chemical Coagulation

Potassium Alum KAl (SO4)2 ·12(H2O)	Ferric Ch Fe Cl3 ·6(

EC Removal Mechanisms

E(



Cathodic reactions (Reduction)

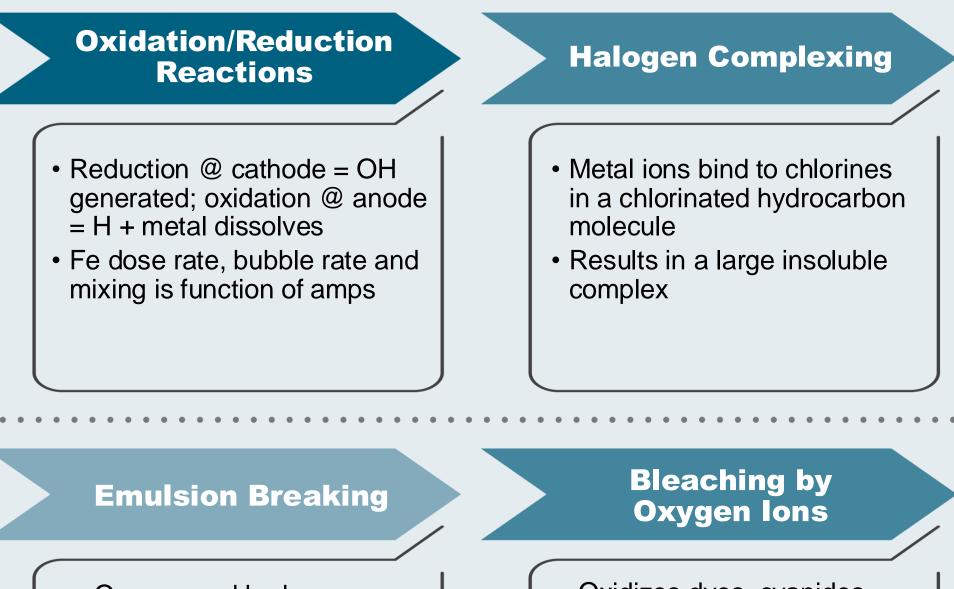
 $2H_2O + 2e^- \rightarrow H_2(g)^* + 2OH^-$

CC	Only (F
	IRON ANODE	
	Al (s) + 3e- Fe (s) + 2e 2H ₂ O + 4e	;
	2H ₂ O + 2e	;
	Fe ²⁺	+

FE Blades) + Fenton (H₂O₂₎

PFAS Destruction Hypothesis

POPUDI $H_2O(l)$ H	
Al (s) + 3e- \rightarrow Al ³⁺ Fe (s) + 2e- \rightarrow Fe ²⁺	Anodic reactions (Oxidation)
$2H_2O + 4e \rightarrow O_2(g) + 4H^+$	
$2H_2O + 2e^- \rightarrow H_2(g)^* + 2OH^-$	Cathodic reactions (Reduction)


PFOS (g/mol)	500
PFOS (ng/L)	
PFOS (g/L)	0.000000
PFOS BDE (kJ/mol)	2
PFOS BDE (kWh/mol)	0.134722
Sample Volume (L)	
Total Energy (kWh)	1.23912E

thesis

Q.. How much energy does it take to break C-F covalent bond in PFOS? 485 kJ/ mol or 0.135 kWh/mol

EC Removal Mechanisms

 Oxygen and hydrogen ions bond into the water receptor sites of oil molecules

• >

 Creates a water insoluble complex that separates water from oil Oxidizes dyes, cyanides, bacteria, viruses, endocrine disruptors, biohazards at anode

Electron Flooding

- Drives zeta potential to zero promoting a sweep floc and efficient agglomeration
- The increase of electrons creates an osmotic pressure that ruptures algae, bacteria, cysts, and viruses

Seeding

- Seeding results from the anode oxidation of metal ions and cathode reduction forming OH ions
- Forms insoluble sweep floc that precipitate as complex metal oxides

What about the solids from EC?

- Solids generated
 - Often pass Toxicity Characteristic Leaching Procedure b/c contaminants are bound as metal oxides - do not leach at ambient landfill pH
 - Depends on concentration in solids (Uranium example)
 - Dissolve more Fe if rad mass %age causes LLRW issues
 - Hydrophobic solids easy to dewater
 - "83% less solids generated than chemical coagulation" per <u>EPA/540/S-93/504 September 1993</u> Emerging Technology Summary, Superfund Innovative Technology Evaluation

College of Marine Science 140 Seventh Avenue South St. Petersburg, Florida 33701 (727) 553-3520 mya@marine.usf.edu

August 7, 2010

Dear Mr. Hamilton,

The purpose of this letter is to inform you of the results we have recently obtained from our tests of the Powell Water Systems Electrocoagulation unit for removal of biological pathogens and indicators from sewage.

We performed a trial using a single sample of raw sewage obtained from a municipal wastewater treatment facility in southwest Florida. Samples were tested to determine the abundance of two types of bacteria and four types of viruses before and after treatment with the electrocoagulation unit. The electrocoagulation process resulted in significant decreases in the concentration of all microorganisms tested, and in several cases reduced the concentration of the pathogens to below the detection limits of our assays. Electrocoagulation led to an approximately 4 log reduction in the concentrations of both fecal coliforms and Enterococci (approximately 99.999% decrease). Concentrations of phages (viruses that infect bacteria) infectious for *Eschericia coli* and *Bacillus subtilis* decreased from several thousand plaque forming units (pfu) per milliliter to less than one pful per milliliter. In addition, concentrations of human polyomaviruses were reduced from approximately 10,000 copies per milliliter to below assay detection limits, demonstrating that electrocoagulation removed human pathogenic viruses.

In addition, we determined the efficiency of electrocoagulation for removing *Pepper mild mottle virus* (PMMoV), which is a plant pathogen that has recently been found at extremely high concentrations in human sewage. PMMoV was found in the raw sewage at approximately 60,000 copies per milliliter and electrocoagulation reduced the PMMoV concentrations to below detection limits. This is extremely encouraging since we typically see PMMoV concentrations in excess of 10,000 copies per milliliter in final effluent from most commercial treatment plants.

My laboratory has spent several years studying the types of viruses and bacteria present in raw sewage and treated wastewater, with the goals of identifying pathogens that present a risk to public health as well as effective indicators that can be used for water quality testing. In our preliminary experiment, the Powell Electrocoagulation unit reduced all the tested biological agents (including both bacteria and viruses) with greater efficacy than current wastewater treatment practices.

Thank you for facilitating this trial, and I hope that we can continue to work together in the future to further evaluate this very promising treatment process.

Sincerely,

Dr. Mya Breitbart

TAMPA ST. PETERSBURG SARASOTA LAKELAND

UNIVERSITY OF SOUTH FLORIDA IS A AFFIRMATIVE ACTION/EQUAL ACCESS/EQUAL OPPORTUNITY INSTITUTION

University of South Florida ran tests with the Powell EC bench-top unit on raw domestic wastewater in 2010 and had this to say...

pathogens to below the detection limits of our assays. Electrocoagulation led to an approximately 4 log reduction in the concentrations of both fecal coliforms and Enterococci (approximately 99.999% decrease). Concentrations of phages (viruses that infect bacteria) infectious for *Eschericia coli* and *Bacillus subtilis* decreased from several thousand plaque forming units (pfu) per milliliter to less than one pful per milliliter. In addition, concentrations of human polyomaviruses were reduced from approximately 10,000 copies per milliliter to below assay detection limits, demonstrating that electrocoagulation removed human pathogenic viruses.

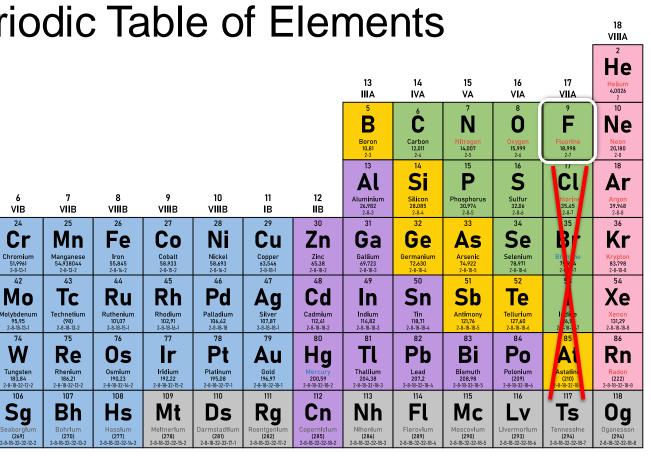
In our preliminary experiment, the Powell Electrocoagulation unit reduced all the tested biological agents (including both bacteria and viruses) with greater efficacy than current wastewater treatment practices.

Dr. Mya Breitbart | University of South Florida

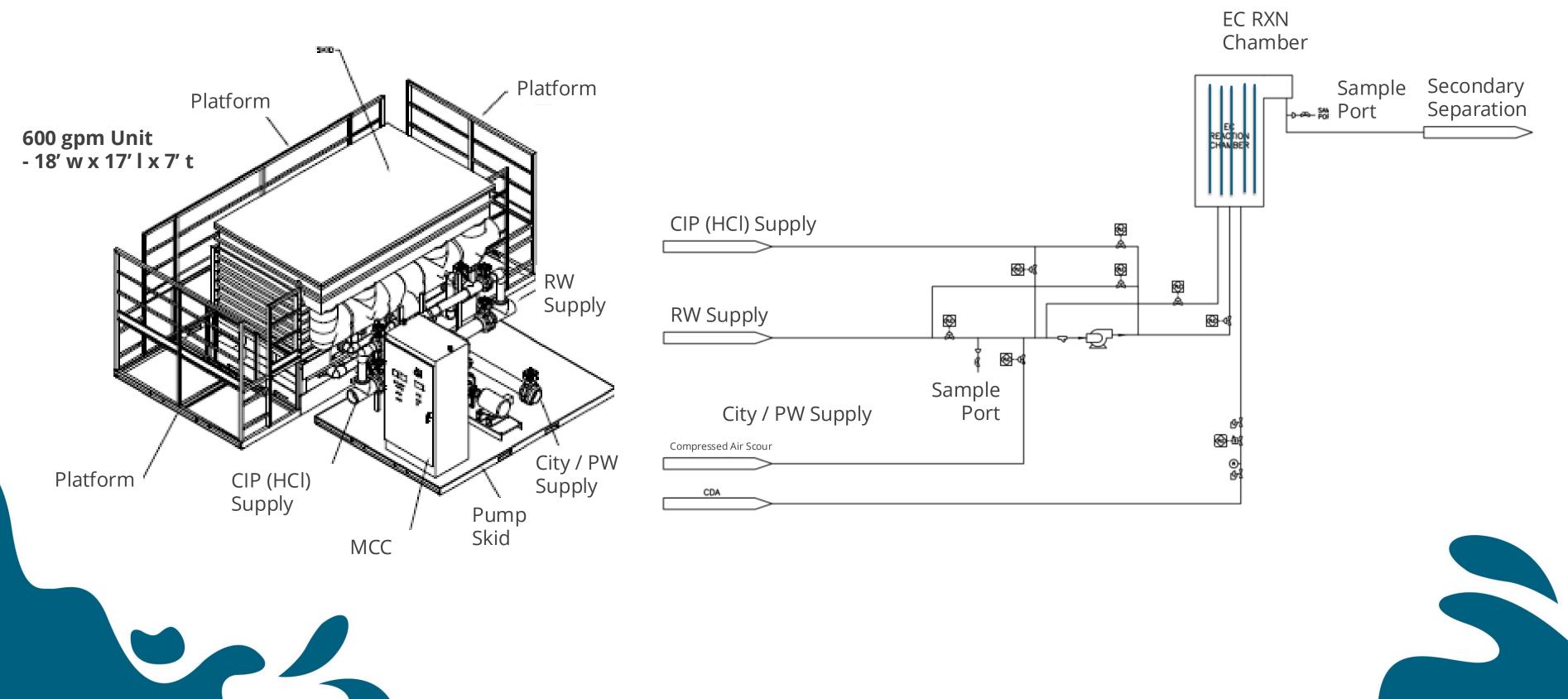
EC – A Clean Process

- clean
 - Reuse acid
 - ~ 0.2#/1,000 gal iron blade consumption
 - Minimal chemicals to buy, store, manage, apply or dispose of in almost all applications
 - Some chemicals are necessary for aggressive WW
 - H2O2 for advanced Fenton reaction
 - Mg, P and NH3 source for struvite precipitation ٢
- Reduced waste stream

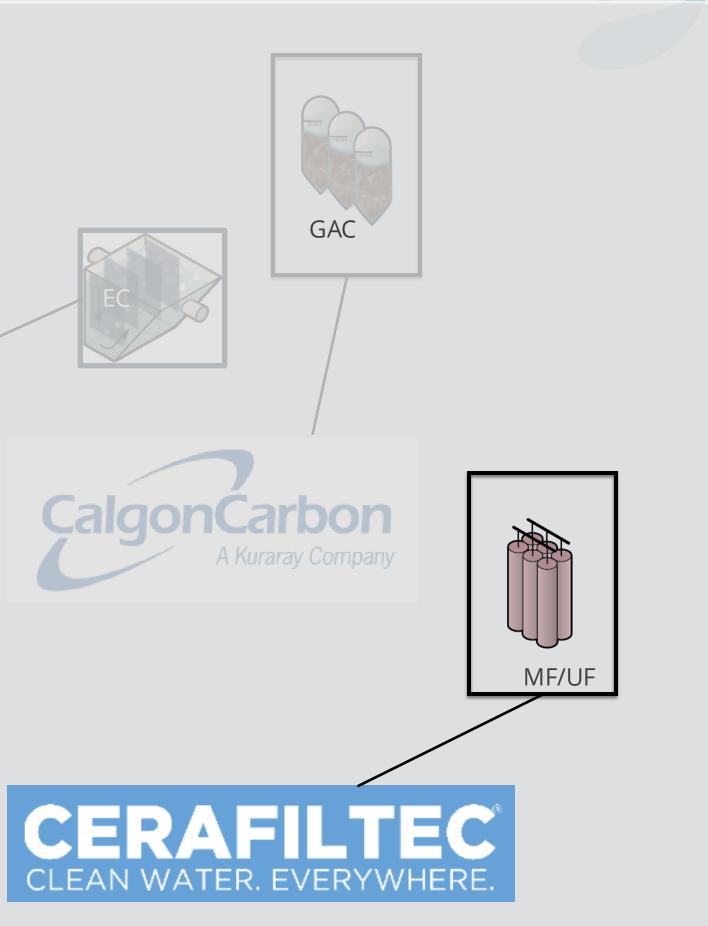
No added chemicals except for periodic acid



- Efficiently remove carbon chains < 6 OR Selenium w/out long residence times and/or chemical catalyst
- Use a lot of electricity
 - Typically 2-7 kWh/1,000 gal
 - Higher conductivity = lower power costs
- Require clean power
 - Only low voltage PLC and computer requires UPS
 - Easier to operate in countries with poor electric grid

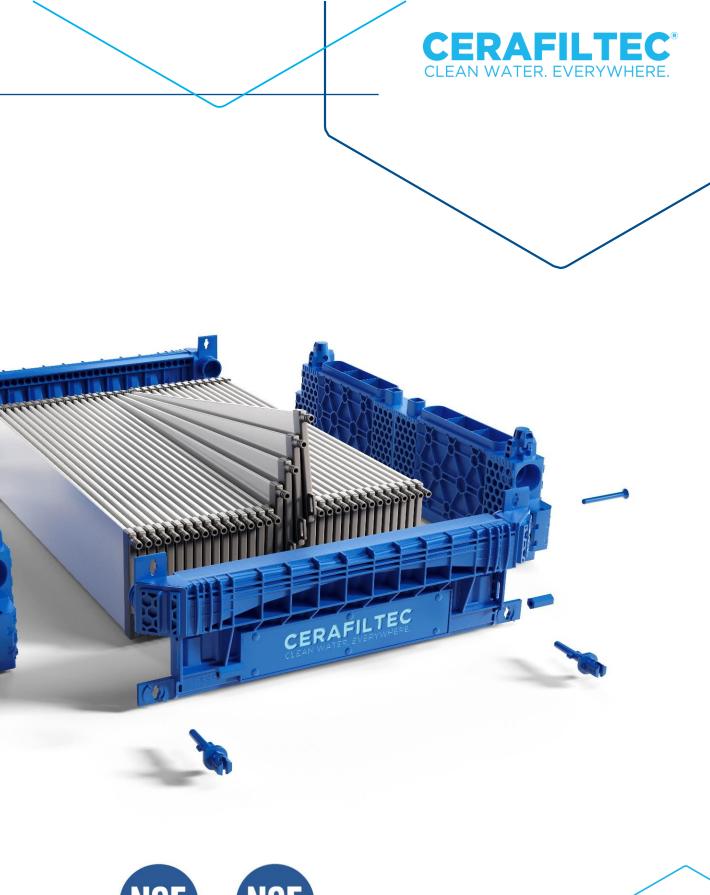

				Pe	r
Hydrogen 1.008 1	2 IIA				
3 Lithium 6.94 2-1	4 Be Beryllium 9.0122 2-2				
	12 M a				
odiy n 21 7897 728 2-8	Magnesium 24.305 2-8-2	3 IIIB	4 IVB	5 VB	
K	Ca	Sc ²¹	22 Ti	23 V	
Pot/ 31 783 3-1	Calcium 40.078 2-8-8-2	Scandium 44.955908 2-8-9-2	Titanium 47.867 2-8-10-2	Vanadium 50.9415 2-8-11-2	(
Rb	³⁸ Sr	39 Y	Žr	⁴¹ Nb	
<mark>4 bi di</mark> m 85,467 2-8-18-6	Strontium 87,62 2-8-18-8-2	Yttrium 88.90584 2-8-18-9-2	Zirconium 91,224 2-8-18-10-2	Niobium 92,90637 2-8-18-12-1	м
55	56	53.54	72 Hf	73 T S	
Caesium 132.9054519. 2-8-18-18-8-1	Barium 137.327 2-8-18-18-8-2	57-71 Lanthanides	Hafnium 178.49 2-8-18-32-10-2	Tantalum 180.94788 2-8-18-32-11-2	
87	88		104	105	
Fr	Ra	89-103 Actinides	Rf	Db	
Franclum (223) 2-8-18-32-18-8-1	Radlum (226) 2-8-18-32-18-8-2		Rutherfordlum (267) 2-8-18-32-32-10-2	Dubnlum (268) 2-8-18-32-32-11-2	S 2-

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Lanthanum 138.91 2-8-18-18-9-2	Cerium 140.12 2-8-18-19-9-2	Praseodymium 140.91 2-8-18-21-8-2	Neodymium 144.24 2-8-18-22-8-2	Promethium (145) 2-8-18-23-8-2	Samarium 150.36 2-8-18-24-8-2	Europium 151.96 2-8-18-25-8-2	Gadolinium 157.25 2-8-18-25-9-2	Terbium 158.93 2-8-18-27-8-2	Dysprosium 162.50 2-8-18-28-8-2	Holmiun 164.93 2-8-18-29-8-2	Erbium 167.26 2-8-18-30-8-2	Thulium 168.93 2-8-18-31-8-2	Ytterbium 173.05 2-8-18-32-8-2	Lutetium 174.97 2-8-18-32-9-2
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
Actinium (227) 2-8-18-32-18-9-2	Thorium 232.04 2-8-18-32-18-10-2	Protactinium 231.04 2-8-18-32-20-9-2	Uranium 238.03 2-8-18-32-21-9-2	Neptunium (237) 2-8-18-32-22-9-2	Plutonium (244) 2-8-18-32-24-8-2	Americium (243) 2-8-18-32-25-8-2	Curium (247) 2-8-18-32-25-9-2	Berkelium (247) 2-8-18-32-27-8-2	Californium (251) 2-8-18-32-28-8-2	Einsteinium (252) 2-8-18-32-29-8-2	Fermium (257) 2-8-18-32-30-8-2	Mendelevium (258) 2-8-18-32-31-8-2	Nobelium (259) 2-8-18-32-32-8-2	Lawrencium (266) 2-8-18-32-32-8-3


Our partners donated their PFAS technology for testing

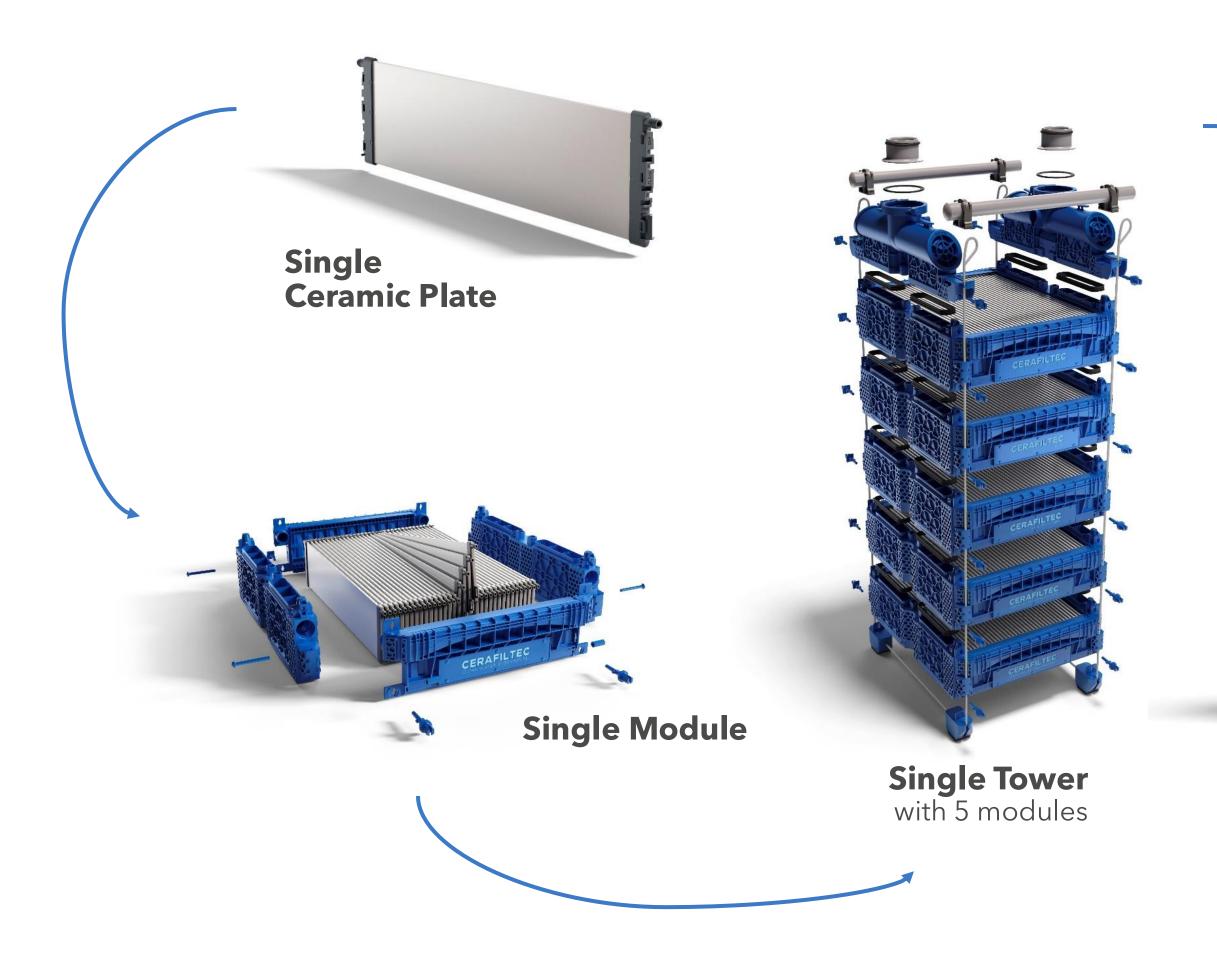
Who is CERAFILTEC?

CERAFILTEC is a **submerged ceramic membrane** technology provider.


All modules are made in **Germany**.

We partner with a global network of **system integrators** to deliver turn-key systems.

Core Applications:

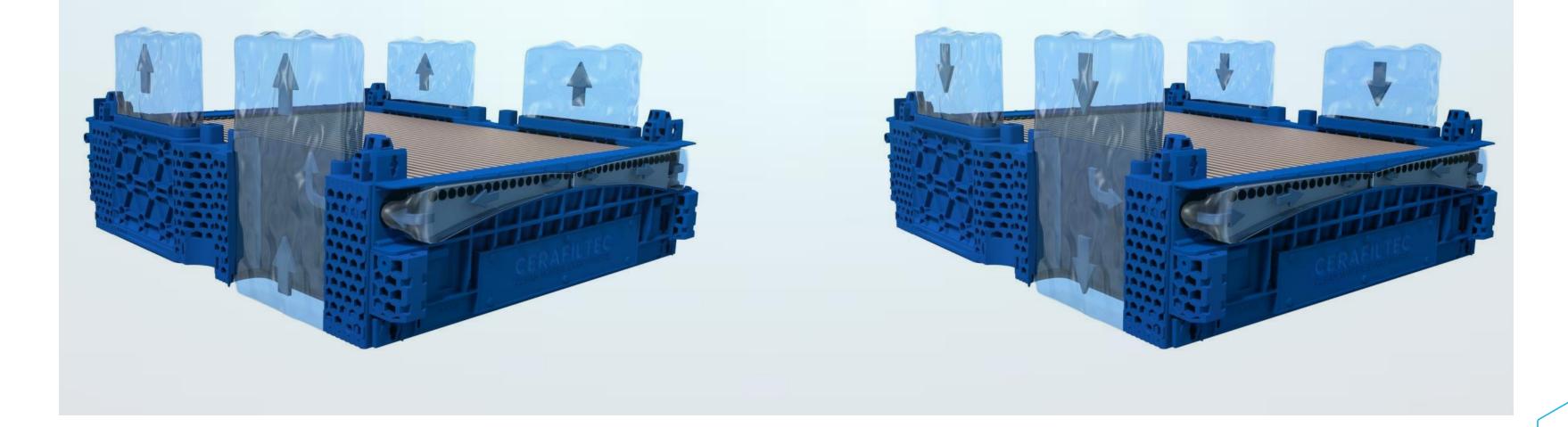

- 1. Drinking Water
- 2. Wastewater & Tertiary Reuse
- 3. Industrial Wastewater

USA HQ: Atlanta, Georgia **Global HQ**: Saarbrücken, Germany

Highly Modular Design

Connected Towers

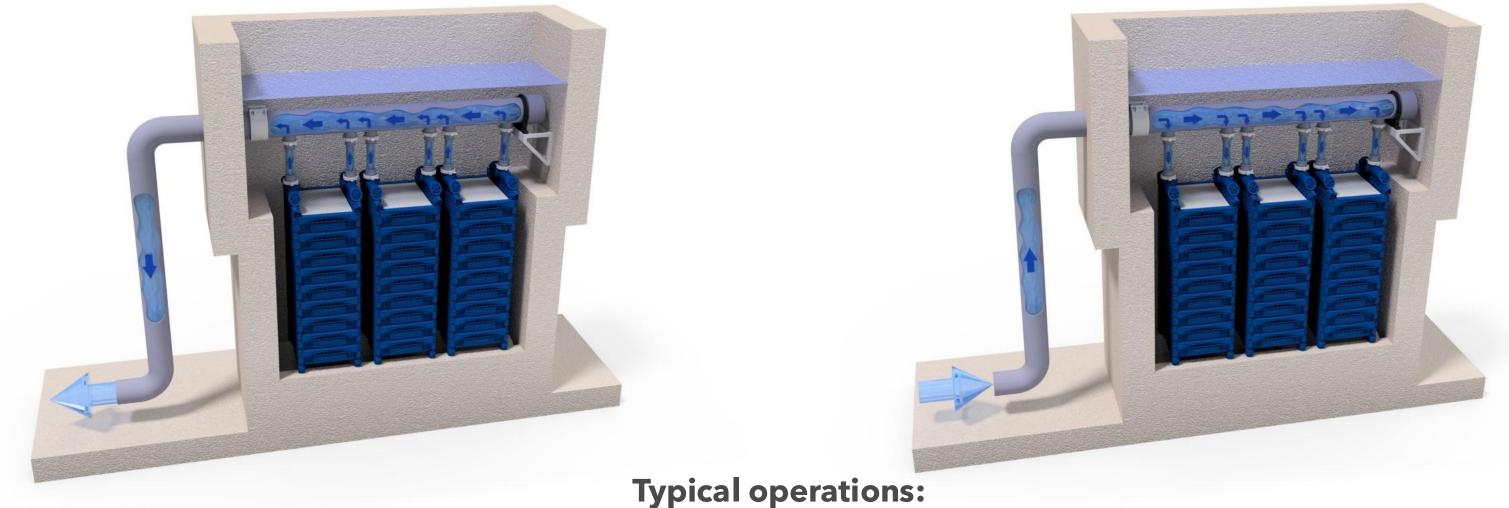
in various configurations (modular design)


CERNANTEC

How CERAFILTEC Works

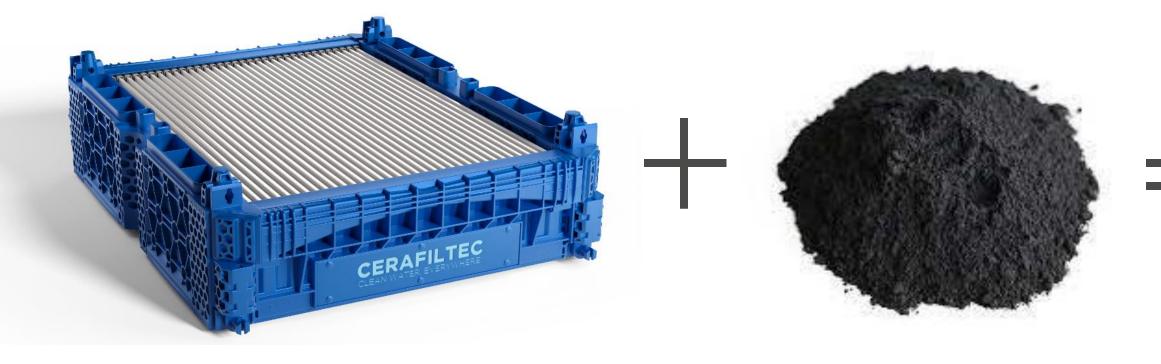
In-to-Out Backwash

Submerged vacuum-driven (negative pressure) filtration and positive backwash pressure



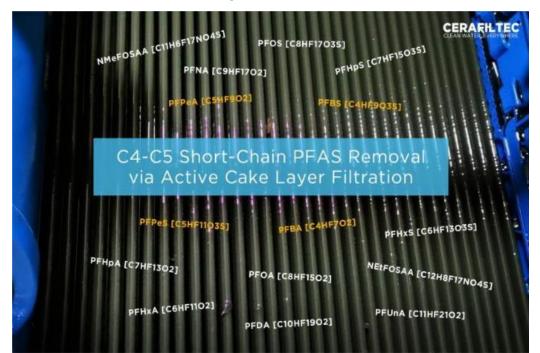
Out-to-In Filtration

In-to-Out Backwash


Submerged vacuum-driven (negative pressure) filtration and positive backwash pressure

100 – 400mbar (1.5 – 6 psi) suction pressure 2-12 hours filtration cycles between backwashes Using typical chemicals (NaOCI, Citric Acid, HCI)

Adsorbent Dosing for Dissolved Contaminant Polishing



Ceramic UF

Powder Activated Carbon

PAC Coated Membranes Active Cake Layer filtration (ACLF)

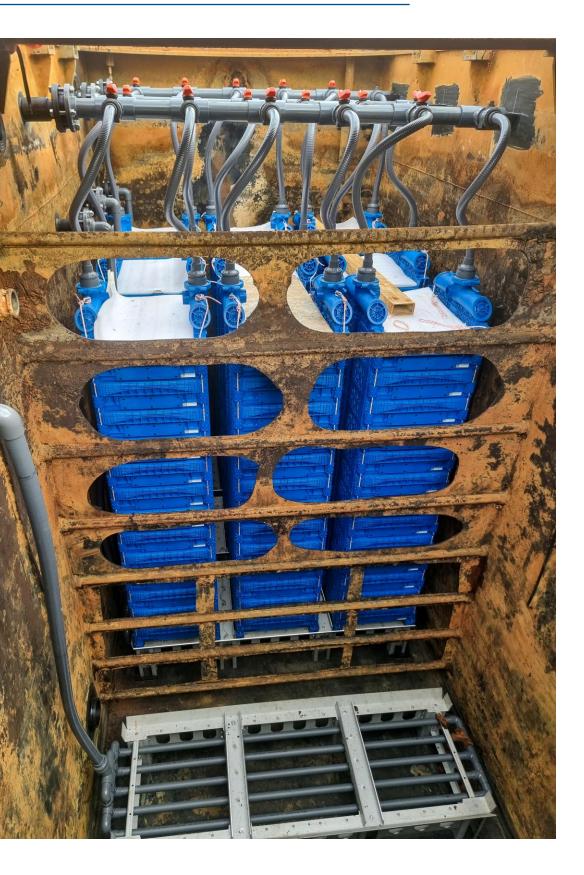
Removing Dissolved **Contaminants**

Active Cake Layer Filtration (ACLF)

Highly Efficient Removal of:

- PFAS
- Dissolved TOC
- Taste, Color, Odor
- Pharmaceutical compounds
- Pesticides
- Radium

HMO adsorbent during operation


PAC adsorbent before backwash

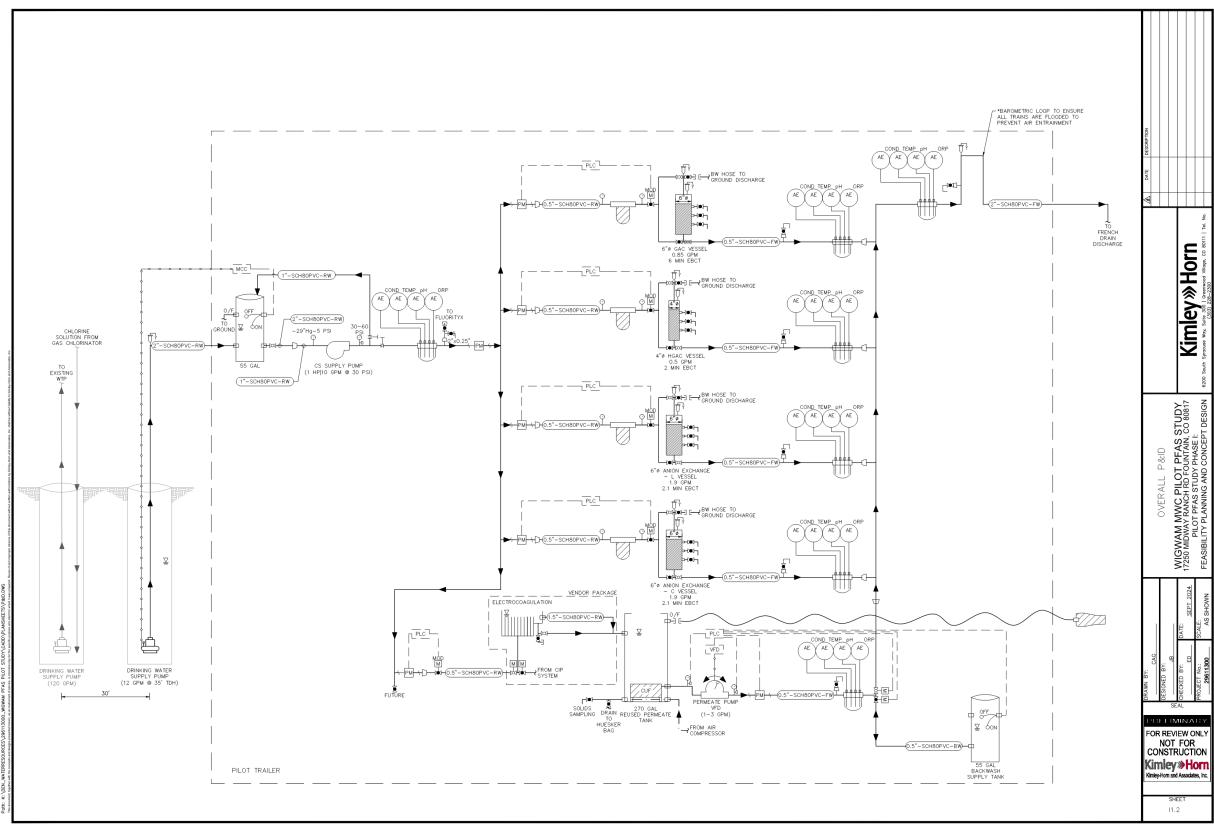
Superior Filtration Technology

Ceramic membranes provide the following advantages over conventional filters:

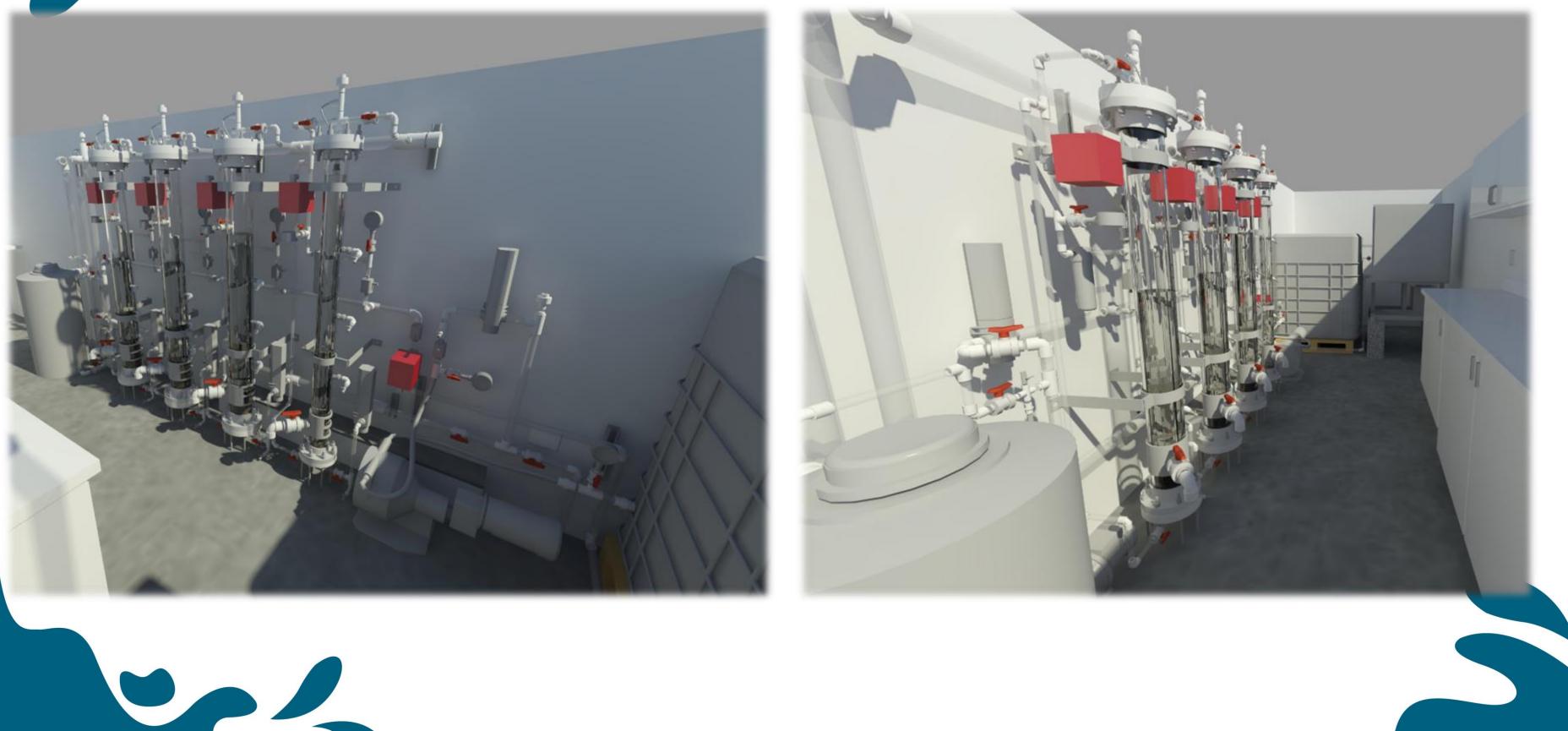
- 1. Robust & Reliable
- 2. Resilient to Dynamic Feed Waters
- 3. Superior Cleaning
- 4. No Fiber Breakages & Low Maintenance
- 5. Long Life (~20 years)
- 6. Ease of Operation
- 7. Lower Total Cost of Ownership (TCO)

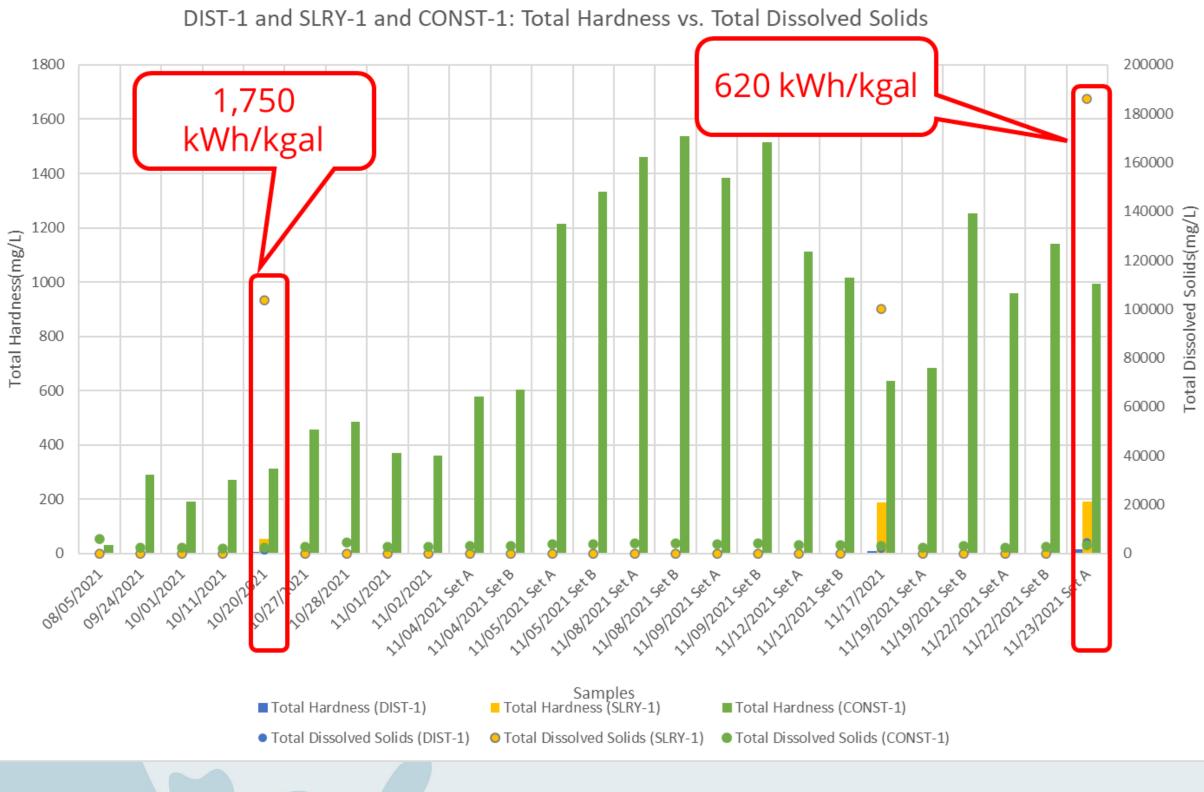
Pilot Trailer Design





Preliminary Site Layout EXISTING ABANDONED WELL HEAD TO BE USED FOR RAW WATER SUPPLY 63 LF OF X" [MATERIAL] ABOVEGROUND PIPE WITH 80 LF OF X' HEATRACE AND [MATERIAL] PIPE INSULATION PROPOSED PILOT TRAILER LOCATION EXISTING UTILITY SERVICE ENTRANCE AND TRAILER POWER LOCATION EXISTING WELL HEAD EXISTING TREATMENT BUILDING 91 LF OF X" PERFORATED [MATERIAL] PIPE EXHIBIT: WIGWAM MWC PFAS PILOT SYSTEM INITIAL SITE OVERVIEW





DURING FMA, WE WILL USE VAED TO REGENERATE SPENT AIX RESIN AND GAC...AND SEE WHAT HAPPENS

Questions?

Eric Dole, PE, PSAP Water & Energy Practice Builder eric.dole@kimley-horn.com 602-881-0186

